Discriminating signal from background using neural networks: Application to top-quark search at the Fermilab Tevatron

dc.contributor.authorAmetller, Ll.cat
dc.contributor.authorGarrido Beltrán, Lluíscat
dc.contributor.authorStimpfl-Abele, G.cat
dc.contributor.authorTalavera Sánchez, Pedrocat
dc.contributor.authorYepes, P.cat
dc.date.accessioned2010-05-06T10:55:04Z
dc.date.available2010-05-06T10:55:04Z
dc.date.issued1996cat
dc.description.abstractThe application of neural networks in high energy physics to the separation of signal from background events is studied. A variety of problems usually encountered in this sort of analysis, from variable selection to systematic errors, are presented. The top-quark search is used as an example to illustrate the problems and proposed solutions.eng
dc.format.extent4 p.cat
dc.format.mimetypeapplication/pdfeng
dc.identifier.idgrec137397cat
dc.identifier.issn0556-2821cat
dc.identifier.urihttps://hdl.handle.net/2445/12429
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevD.54.1233cat
dc.relation.ispartofPhysical Review D, 1996, vol. 54, núm. 1, p. 1233-1236cat
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevD.54.1233
dc.rights(c) The American Physical Society, 1996eng
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationPartícules (Física nuclear)cat
dc.subject.classificationFísica matemàticacat
dc.subject.otherParticles (Nuclear physics)eng
dc.subject.otherMathematical physicseng
dc.titleDiscriminating signal from background using neural networks: Application to top-quark search at the Fermilab Tevatroneng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
137397.pdf
Mida:
98.68 KB
Format:
Adobe Portable Document Format