Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/164643

Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Starting from the question: What is the accident risk of an insured individual?, we consider that the customer has contracted policies in different insurance lines: motor and home. Three models based on the multivariate Sarmanov distribution are analyzed. Driven by a real data set that takes into account three types of accident risks, two for motor and one for home, three trivariate Sarmanov distributions with generalized linear models (GLMs) for marginals are considered and fitted to the data. To estimate the parameters of these three models, we discuss a method for approaching the maximum likelihood (ML) estimators. Finally, the three models are compared numerically with the simpler trivariate Negative Binomial GLM and with elliptical copula based models.

Citació

Citació

BOLANCÉ LOSILLA, Catalina, VERNIC, Raluca. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. _Insurance Mathematics and Economics_. 2019. Vol. 85, núm. 89-103. [consulta: 20 de gener de 2026]. ISSN: 0167-6687. [Disponible a: https://hdl.handle.net/2445/164643]

Exportar metadades

JSON - METS

Compartir registre