Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Bolancé Losilla, Catalina et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185282

Non-Normal Market Losses and Spatial Dependence Using Uncertainty Indices

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We analyse spatial dependence between the risks of stock markets. An alternative definition of neighbour is used and is based on a proposed exogenous criterion obtained with a dynamic Google Trends Uncertainty Index (GTUI) designed specifically for this analysis. We show the impact of systemic risk on spatial dependence related to the most significant financial crises from 2005: the Lehman Brothers bankruptcy, the sub-prime mortgage crisis, the European debt crisis, Brexit and the COVID-19 pandemic, which also affected the financial markets. The risks are measured using the monthly variance or volatility and the monthly Value-at-Risk (VaR) of the filtered losses associated with the analysed indices. Given that the analysed risk measures follow non-normal distributions and the number of neighbours changes over time, we carry out a simulation study to check how these characteristics affect the results of global and local inference using Moran's I statistic. Lastly, we analyse the global spatial dependence between the risks of 46 stock markets and we study the local spatial dependence for 10 benchmark stock markets worldwide.

Citació

Citació

BOLANCÉ LOSILLA, Catalina, ACUÑA, Carlos, TORRA PORRAS, Salvador. Non-Normal Market Losses and Spatial Dependence Using Uncertainty Indices. _Mathematics_. 2022. Vol. 10(8), núm. 1317, pàgs. 1-23. [consulta: 24 de gener de 2026]. ISSN: 2227-7390. [Disponible a: https://hdl.handle.net/2445/185282]

Exportar metadades

JSON - METS

Compartir registre