Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/117331

Using survey data to forecast real activity with evolutionary algorithms. A cross-country analysis

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this study we use survey expectations about a wide range of economic variables to forecast real activity. We propose an empirical approach to derive mathematical functional forms that link survey expectations to economic growth. Combining symbolic regression with genetic programming we generate two survey-based indicators: a perceptions index, using agents' assessments about the present, and an expectations index with their expectations about the future. In order to find the optimal combination of both indexes that best replicates the evolution of economic activity in each country we use a portfolio management procedure known as index tracking. By means of a generalized reduced gradient algorithm we derive the relative weights of both indexes. In most economies, the survey-based predictions generated with the composite indicator outperform the benchmark model for one-quarter ahead forecasts, although these improvements are only significant in Austria, Belgium and Portugal.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Using survey data to forecast real activity with evolutionary algorithms. A cross-country analysis. _Journal Of Applied Economics_. 2017. Vol. 20, núm. 2, pàgs. 329-349. [consulta: 23 de gener de 2026]. ISSN: 1514-0326. [Disponible a: https://hdl.handle.net/2445/117331]

Exportar metadades

JSON - METS

Compartir registre