Front and domain growth in the presence of gravity

dc.contributor.authorLacasta Palacio, Ana Maríacat
dc.contributor.authorHernández Machado, Auroracat
dc.contributor.authorSancho, José M.cat
dc.date.accessioned2009-10-30T09:47:11Z
dc.date.available2009-10-30T09:47:11Z
dc.date.issued1993cat
dc.description.abstractFront and domain growth of a binary mixture in the presence of a gravitational field is studied. The interplay of bulk- and surface-diffusion mechanisms is analyzed. An equation for the evolution of interfaces is derived from a time-dependent Ginzburg-Landau equation with a concentration-dependent diffusion coefficient. Scaling arguments on this equation give the exponents of a power-law growth. Numerical integrations of the Ginzburg-Landau equation corroborate the theoretical analysis.eng
dc.format.extent10 p.cat
dc.format.mimetypeapplication/pdfeng
dc.identifier.idgrec82494cat
dc.identifier.issn0163-1829cat
dc.identifier.urihttps://hdl.handle.net/2445/9889
dc.language.isoengeng
dc.publisherThe American Physical Societycat
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevB.48.9418cat
dc.relation.ispartofPhysical Review B, 1993, vol. 48, núm. 13, p. 9418-9425.cat
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevB.48.9418
dc.rights(c) The American Physical Society, 1993cat
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationTransformacions de fase (Física estadística)cat
dc.subject.classificationDifusiócat
dc.subject.classificationFísica de l'estat sòlidcat
dc.subject.otherPhase transformations (Statistical physics)eng
dc.subject.otherDiffusioneng
dc.titleFront and domain growth in the presence of gravityeng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
82494.pdf
Mida:
2.5 MB
Format:
Adobe Portable Document Format