Espais vectorials de linealitzacions per a matrius polinomials

dc.contributor.advisorMontoro López, M. Eulàlia
dc.contributor.authorFernández Montseny, Irene
dc.date.accessioned2023-10-20T06:40:54Z
dc.date.available2023-10-20T06:40:54Z
dc.date.issued2023-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: M. Eulàlia Montoro Lópezca
dc.description.abstract[en] For eigenvalue problems of polynomial matrices we find that the classic solution method is linearization of the polynomial matrix. Reformulating the initial eigenvalue problem we obtain an expression for matrix pencils, that is, matrices of the form $\lambda X+Y, X, Y \in \mathbb{C}^{n \times n}$, which maintains the spectral structure. Within the framework of linear algebra and matrix theory, polynomial matrices are objects of recent study. In this work we focus on square regular polynomial matrices, i.e. with non-zero determinant. We introduce the basic concepts necessary to understand them, then we see what the linearization of regular polynomial matrices consist of and we define the "companion forms" or companion matrices. Finally, we study the vector spaces of linearizations; more specifically, how to construct two vector spaces of dense pencils in the set of linearizations.ca
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202970
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Irene Fernández Montseny, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationÀlgebra linealca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationMatrius (Matemàtica)ca
dc.subject.otherLinear algebraen
dc.subject.otherBachelor's theses
dc.subject.otherMatricesen
dc.titleEspais vectorials de linealitzacions per a matrius polinomialsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_irene_fernández_montseny.pdf
Mida:
594.46 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria