El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Fundamental principles of Binary Latent Diffusion

dc.contributor.advisorCasacuberta, Carles
dc.contributor.advisorEscalera Guerrero, Sergio
dc.contributor.authorPujol Vidal, Àlex
dc.date.accessioned2025-01-23T09:06:36Z
dc.date.available2025-01-23T09:06:36Z
dc.date.issued2024-09-02
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Carles Casacuberta i Sergio Escalera Guerreroca
dc.description.abstractIn this thesis we explore the fundamental principles of Binary Latent Diffusion Models (BLDM), a novel class of generative models that leverage probabilistic deep latent variable models and diffusion processes to approximate complex data distributions. The research delves into probability theory, generative models, and latent space representations, with a focus on Variational Autoencoders (VAE) that lead to Bernoulli Variational Autoencoders (BVAE). The study provides a comprehensive overview of the foundations of Diffusion Models, leading to the formal definition of Discrete Bernoulli Diffusion Models (DBDM) and its training objective. Both, BVAE and DBDM, are the building blocks of the BLDM. Additionally, a practical application is presented. This exploration highlights the mathematical formalization and implementation strategies for BLDMs, paving the way for future advancements in generative modeling.ca
dc.format.extent82 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/217853
dc.language.isoengca
dc.rightscc by-nc-nd (c) Àlex Pujol Vidal, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationProbabilitats combinatòriescat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherMachine learningeng
dc.subject.otherCombinatorial probabilitieseng
dc.subject.otherMaster's thesiseng
dc.titleFundamental principles of Binary Latent Diffusionca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_pujol_vidal_alex.pdf
Mida:
5.89 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria