Encapsulation Enhances the Quantum Coherence of a Solid‐State Molecular Spin Qubit

dc.contributor.authorSwain, Abinash
dc.contributor.authorBarrios Moreno, Leoní Alejandra
dc.contributor.authorNelyubina, Yulia
dc.contributor.authorTeat, Simon J.
dc.contributor.authorRoubeau, Olivier
dc.contributor.authorNovikov, Valentin
dc.contributor.authorAromí Bedmar, Guillem
dc.date.accessioned2025-09-22T15:27:18Z
dc.date.available2025-09-22T15:27:18Z
dc.date.issued2025-09-01
dc.date.updated2025-09-22T15:27:18Z
dc.description.abstractSpins within molecules benefit from the atomistic control of synthetic chemistry for the realization of qubits. One advantage is that the quantum superpositions of the spin states encoding the qubit can be coherently manipulated using electromagnetic radiation. The main challenge is the fragility of these superpositions when qubits are to partake of solid-state devices. We address this issue with a supramolecular approach for protecting molecular spin qubits against decoherence. The molecular qubit [Cr(ox)3]3− has been encapsulated inside the diamagnetic triple-stranded helicate [Zn2L3]4+ (L is a bis-pyrazolylpyridine ligand). The quantum coherence of the protected qubit is then analyzed with pulsed EPR spectroscopy and compared with the unprotected qubit, both in solution and in the solid state. Crucially, the spin–spin relaxation in the solid state has been examined within diamagnetic crystal lattices of the isostructural ([Al(ox)3]@[Zn2L3])+ or [Al(ox)3]3- assemblies, respectively, doped with the Cr3+ qubit in two different (<10%) concentrations. The study unveils a surprising increase of the phase memory time of the qubit upon encapsulation only in the solid. Spin-lattice relaxation times also exhibit a significant enhancement, as established from inversion recovery pulse sequences and from slow relaxation of the magnetization of the protected qubit, not featured by the free qubit.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec760539
dc.identifier.issn1433-7851
dc.identifier.urihttps://hdl.handle.net/2445/223329
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofReproducció del document publicat a: https://doi.org/doi.org/10.1002/anie.202510603
dc.relation.ispartofAngewandte Chemie-International Edition, 2025
dc.relation.urihttps://doi.org/doi.org/10.1002/anie.202510603
dc.rightscc-by (c) Swain, Abinash, et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationEstructura molecular
dc.subject.classificationOrdinadors quàntics
dc.subject.classificationQuímica supramolecular
dc.subject.otherMolecular structure
dc.subject.otherQuantum computers
dc.subject.otherSupramolecular chemistry
dc.titleEncapsulation Enhances the Quantum Coherence of a Solid‐State Molecular Spin Qubit
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
899981.pdf
Mida:
1.01 MB
Format:
Adobe Portable Document Format