Interpolation and Sampling Hypersurfaces for the Bargmann-Fock space in higher dimensions

dc.contributor.authorOrtega Cerdà, Joaquim
dc.contributor.authorSchuster, Alexander
dc.contributor.authorVarolin, Dror
dc.date.accessioned2020-06-05T07:44:59Z
dc.date.available2020-06-05T07:44:59Z
dc.date.issued2006
dc.date.updated2020-06-05T07:44:59Z
dc.description.abstractWe study those smooth complex hypersurfaces $W$ in $\C ^n$ having the property that all holomorphic functions of finite weighted $L^p$ norm on $W$ extend to entire functions with finite weighted $L^p$ norm. Such hypersurfaces are called interpolation hypersurfaces. We also examine the dual problem of finding all sampling hypersurfaces, i.e., smooth hypersurfaces $W$ in $\C ^n$ such that any entire function with finite weighted $L^p$ norm is stably determined by its restriction to $W$. We provide sufficient geometric conditions on the hypersurface to be an interpolation and sampling hypersurface. The geometric conditions that imply the extension property and the restriction property are given in terms of some directional densities.
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec529508
dc.identifier.issn0025-5831
dc.identifier.urihttps://hdl.handle.net/2445/164417
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s00208-005-0726-3
dc.relation.ispartofMathematische Annalen, 2006, vol. 335, num. 1, p. 79-107
dc.relation.urihttps://doi.org/10.1007/s00208-005-0726-3
dc.rights(c) Springer Verlag, 2006
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions meromorfes
dc.subject.classificationFuncions enteres
dc.subject.otherMeromorphic functions
dc.subject.otherEntire functions
dc.titleInterpolation and Sampling Hypersurfaces for the Bargmann-Fock space in higher dimensions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
529508.pdf
Mida:
295.74 KB
Format:
Adobe Portable Document Format