Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Ioar Casado Telletxea, 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/135558

Compactness and Löwenheim-Skolem theorems in extensions of first-order logic

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Lindström’s theorem characterizes first-order logic as the most expressive among those that satisfy the countable Compactness and downward Löwenheim-Skolem theorems. Given the importance of this results in model theory, Lindström’s theorem justifies, to some extent, the privileged position of first-order logic in contemporary mathematics. Even though Lindström’s theorem gives a negative answer to the problem of finding a proper extension of first-order logic satisfying the same model-theoretical properties, the study of these extensions has been of great importance during the second half of the XX. century: logicians were trying to find systems that kept a balance between expressive power and rich model-theoretical properties. The goal of this essay is to prove Lindström’s theorem, along with its prerequisites, and to give weaker versions of the Compactness and Löwenheim-Skolem theorems for the logic L ( Q 1 ) (first-order logic with the quantifier "there exist uncountably many"), which we present as an example of extended logic with good model-theoretical properties.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Enrique Casanovas Ruiz-Fornells

Citació

Citació

CASADO TELLETXEA, Ioar. Compactness and Löwenheim-Skolem theorems in extensions of first-order logic. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/135558]

Exportar metadades

JSON - METS

Compartir registre