Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195443

Any three eigenvalues do not determine a triangle

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Despite the moduli space of triangles being three dimensional, we prove the existence of two triangles which are not isometric to each other for which the first, second and fourth Dirichlet eigenvalues coincide, establishing a numerical observation from Antunes-Freitas [1]. The two triangles are far from any known, explicit cases. To do so, we develop new tools to rigorously enclose eigenvalues to a very high precision, as well as their position in the spectrum. This result is also mentioned as (the negative) part of [35, Conjecture 6.46], [23, Open Problem 1] and [39, Conjecture 3].

Citació

Citació

GÓMEZ SERRANO, Javier, ORRIOLS, Gerard. Any three eigenvalues do not determine a triangle. _Journal of Differential Equations_. 2021. Vol. 275, núm. 920-938. [consulta: 20 de gener de 2026]. ISSN: 0022-0396. [Disponible a: https://hdl.handle.net/2445/195443]

Exportar metadades

JSON - METS

Compartir registre