Any three eigenvalues do not determine a triangle

dc.contributor.authorGómez Serrano, Javier
dc.contributor.authorOrriols, Gerard
dc.date.accessioned2023-03-17T08:32:03Z
dc.date.available2023-03-17T08:32:03Z
dc.date.issued2021-02-25
dc.date.updated2023-03-17T08:32:03Z
dc.description.abstractDespite the moduli space of triangles being three dimensional, we prove the existence of two triangles which are not isometric to each other for which the first, second and fourth Dirichlet eigenvalues coincide, establishing a numerical observation from Antunes-Freitas [1]. The two triangles are far from any known, explicit cases. To do so, we develop new tools to rigorously enclose eigenvalues to a very high precision, as well as their position in the spectrum. This result is also mentioned as (the negative) part of [35, Conjecture 6.46], [23, Open Problem 1] and [39, Conjecture 3].
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec710937
dc.identifier.issn0022-0396
dc.identifier.urihttps://hdl.handle.net/2445/195443
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jde.2020.11.002
dc.relation.ispartofJournal of Differential Equations, 2021, vol. 275, p. 920-938
dc.relation.urihttps://doi.org/10.1016/j.jde.2020.11.002
dc.rightscc-by-nc-nd (c) Elsevier, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats (Matemàtica)
dc.subject.classificationAnàlisi global (Matemàtica)
dc.subject.classificationTeoria espectral (Matemàtica)
dc.subject.otherManifolds (Mathematics)
dc.subject.otherGlobal analysis (Mathematics)
dc.subject.otherSpectral theory (Mathematics)
dc.titleAny three eigenvalues do not determine a triangle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
710937.pdf
Mida:
323.81 KB
Format:
Adobe Portable Document Format