Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Alemany Leira, Ramon et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/173804

Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence An Application to Model Claim Frequency and Optimal Transformed Average Severity

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The aim of this paper is to introduce dependence between the claim frequency and the average severity of a policyholder or of an insurance portfolio using a bivariate Sarmanov distribution, that allows to join variables of different types and with different distributions, thus being a good candidate for modeling the dependence between the two previously mentioned random variables. To model the claim frequency, a generalized linear model based on a mixed Poisson distribution -like for example, the Negative Binomial (NB), usually works. However, finding a distribution for the claim severity is not that easy. In practice, the Lognormal distribution fits well in many cases. Since the natural logarithm of a Lognormal variable is Normal distributed, this relation is generalised using the Box-Cox transformation to model the average claim severity. Therefore, we propose a bivariate Sarmanov model having as marginals a Negative Binomial and a Normal Generalized Linear Models (GLMs), also depending on the parameters of the Box-Cox transformation. We apply this model to the analysis of the frequency-severity bivariate distribution associated to a pay-as-you-drive motor insurance portfolio with explanatory telematic variables.

Citació

Citació

ALEMANY LEIRA, Ramon, BOLANCÉ LOSILLA, Catalina, RODRIGO MARQUÉS, Roberto, VERNIC, Raluca. Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence An Application to Model Claim Frequency and Optimal Transformed Average Severity. _Mathematics_. 2021. Vol. 1, núm. 9. [consulta: 24 de gener de 2026]. ISSN: 2227-7390. [Disponible a: https://hdl.handle.net/2445/173804]

Exportar metadades

JSON - METS

Compartir registre