Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194915

Does our social life influence our nutritional behaviour? Understanding nutritional habits from egocentric photo-streams

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Nutrition and social interactions are both key aspects of the daily lives of humans. In this work, we propose a system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person perspective. In order to detect the routine of an individual, we construct a nutritional behaviour pattern discovery model, which outputs routines over a number of days. Our method evaluates similarity of routines with respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as considering social engagement and its correlation with food-related activities. The nutritional and social descriptors of the collected days are evaluated and encoded using an LSTM Autoencoder. Later, the obtained latent space is clustered to find similar days unaffected by outliers using the Isolation Forest method. Moreover, we introduce a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 104 days and more than 100 k egocentric images gathered by 7 users. Several different visualizations are evaluated for the understanding of the findings. Our results demonstrate good performance and applicability of our proposed model for social-related nutritional behaviour understanding. At the end, relevant applications of the model are discussed by analysing the discovered routine of particular individuals.

Citació

Citació

GLAVAN, Andreea, MATEI, Alina, RADEVA, Petia, TALAVERA MARTÍNEZ, Estefanía. Does our social life influence our nutritional behaviour? Understanding nutritional habits from egocentric photo-streams. _Expert Systems with Applications_. 2020. Vol. 171. [consulta: 22 de gener de 2026]. ISSN: 0957-4174. [Disponible a: https://hdl.handle.net/2445/194915]

Exportar metadades

JSON - METS

Compartir registre