Does our social life influence our nutritional behaviour? Understanding nutritional habits from egocentric photo-streams

dc.contributor.authorGlavan, Andreea
dc.contributor.authorMatei, Alina
dc.contributor.authorRadeva, Petia
dc.contributor.authorTalavera Martínez, Estefanía
dc.date.accessioned2023-03-09T11:11:07Z
dc.date.available2023-03-09T11:11:07Z
dc.date.issued2020-12-24
dc.date.updated2023-03-09T11:11:08Z
dc.description.abstractNutrition and social interactions are both key aspects of the daily lives of humans. In this work, we propose a system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person perspective. In order to detect the routine of an individual, we construct a nutritional behaviour pattern discovery model, which outputs routines over a number of days. Our method evaluates similarity of routines with respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as considering social engagement and its correlation with food-related activities. The nutritional and social descriptors of the collected days are evaluated and encoded using an LSTM Autoencoder. Later, the obtained latent space is clustered to find similar days unaffected by outliers using the Isolation Forest method. Moreover, we introduce a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 104 days and more than 100 k egocentric images gathered by 7 users. Several different visualizations are evaluated for the understanding of the findings. Our results demonstrate good performance and applicability of our proposed model for social-related nutritional behaviour understanding. At the end, relevant applications of the model are discussed by analysing the discovered routine of particular individuals.
dc.format.extent43 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec722516
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/2445/194915
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.eswa.2020.114506
dc.relation.ispartofExpert Systems with Applications, 2020, vol. 171
dc.relation.urihttps://doi.org/10.1016/j.eswa.2020.114506
dc.rightscc-by-nc-nd (c) Elsevier, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationNutrició
dc.subject.classificationReconeixement de formes (Informàtica)
dc.subject.classificationVisió per ordinador
dc.subject.classificationAprenentatge automàtic
dc.subject.otherNutrition
dc.subject.otherPattern recognition systems
dc.subject.otherComputer vision
dc.subject.otherMachine learning
dc.titleDoes our social life influence our nutritional behaviour? Understanding nutritional habits from egocentric photo-streams
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
722516.pdf
Mida:
8.83 MB
Format:
Adobe Portable Document Format