Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/69315
Effective Reducibility of Quasi-Periodic Linear Equations close to Constant Coefficients
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Let us consider the differential equation $$ \dot{x}=(A+\varepsilon Q(t,\varepsilon))x, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where A is an elliptic constant matrix and Q depends on time in a quasi-periodic (and analytic) way. It is also assumed that the eigenvalues of A and the basic frequencies of Q satisfy a diophantine condition. Then it is proved that this system can be reduced to $$ \dot{y}=(A^{*}(\varepsilon)+\varepsilon R^{*}(t,\varepsilon))y, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where $R^{*}$ is exponentially small in $\varepsilon$, and the linear change of variables that performs such a reduction is also quasi-periodic with the same basic frequencies as Q. The results are illustrated and discussed in a practical example.
Matèries
Matèries (anglès)
Citació
Citació
JORBA I MONTE, Àngel, RAMÍREZ-ROS, Rafael, VILLANUEVA, Jordi. Effective Reducibility of Quasi-Periodic Linear Equations close to Constant Coefficients. _SIAM Journal on Mathematical Analysis_. 1997. Vol. 28, núm. 1, pàgs. 178-188. [consulta: 7 de gener de 2026]. ISSN: 0036-1410. [Disponible a: https://hdl.handle.net/2445/69315]