Effective Reducibility of Quasi-Periodic Linear Equations close to Constant Coefficients

dc.contributor.authorJorba i Monte, Àngel
dc.contributor.authorRamírez-Ros, Rafael
dc.contributor.authorVillanueva, Jordi
dc.date.accessioned2016-02-08T16:29:00Z
dc.date.available2016-02-08T16:29:00Z
dc.date.issued1997-01
dc.date.updated2016-02-08T16:29:00Z
dc.description.abstractLet us consider the differential equation $$ \dot{x}=(A+\varepsilon Q(t,\varepsilon))x, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where A is an elliptic constant matrix and Q depends on time in a quasi-periodic (and analytic) way. It is also assumed that the eigenvalues of A and the basic frequencies of Q satisfy a diophantine condition. Then it is proved that this system can be reduced to $$ \dot{y}=(A^{*}(\varepsilon)+\varepsilon R^{*}(t,\varepsilon))y, \;\;\;\; |\varepsilon|\le\varepsilon_0, $$ where $R^{*}$ is exponentially small in $\varepsilon$, and the linear change of variables that performs such a reduction is also quasi-periodic with the same basic frequencies as Q. The results are illustrated and discussed in a practical example.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec588682
dc.identifier.issn0036-1410
dc.identifier.urihttps://hdl.handle.net/2445/69315
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1137/S0036141095280967
dc.relation.ispartofSIAM Journal on Mathematical Analysis, 1997, vol. 28, num. 1, p. 178-188
dc.relation.urihttp://dx.doi.org/10.1137/S0036141095280967
dc.rights(c) Society for Industrial and Applied Mathematics., 1997
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi global (Matemàtica)
dc.subject.otherGlobal analysis (Mathematics)
dc.titleEffective Reducibility of Quasi-Periodic Linear Equations close to Constant Coefficients
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
588682.pdf
Mida:
269.92 KB
Format:
Adobe Portable Document Format