Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Burgos Artizzu, Xavier P. et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/176916

Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother's cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.

Descripció

An Author Correction to this article was published on 31 January 2022, https://doi.org/10.1038/s41598-022-06173-z

Citació

Citació

BURGOS ARTIZZU, Xavier p., CORONADO GUTIÉRREZ, David, VALENZUELA ALCARAZ, Brenda i., BONET CARNÉ, Elisenda, EIXARCH ROCA, Elisenda, CRISPI BRILLAS, Fàtima, GRATACÓS SOLSONA, Eduard. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. _Scientific Reports_. 2020. Vol. 10, núm. 1, pàgs. 10200. [consulta: 20 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/176916]

Exportar metadades

JSON - METS

Compartir registre