Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

dc.contributor.authorBurgos Artizzu, Xavier P.
dc.contributor.authorCoronado Gutiérrez, David
dc.contributor.authorValenzuela Alcaraz, Brenda I.
dc.contributor.authorBonet Carné, Elisenda
dc.contributor.authorEixarch Roca, Elisenda
dc.contributor.authorCrispi Brillas, Fàtima
dc.contributor.authorGratacós Solsona, Eduard
dc.date.accessioned2021-04-30T08:32:09Z
dc.date.available2021-04-30T08:32:09Z
dc.date.issued2020-06-23
dc.date.updated2021-04-30T08:32:09Z
dc.descriptionAn Author Correction to this article was published on 31 January 2022, https://doi.org/10.1038/s41598-022-06173-z
dc.description.abstractThe goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother's cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec704130
dc.identifier.idimarina9297102
dc.identifier.issn2045-2322
dc.identifier.pmid32576905
dc.identifier.urihttps://hdl.handle.net/2445/176916
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-020-67076-5
dc.relation.ispartofScientific Reports, 2020, vol. 10, num. 1, p. 10200
dc.relation.urihttps://doi.org/10.1038/s41598-020-67076-5
dc.relation.urihttps://doi.org/10.1038/s41598-022-06173-z
dc.rightscc-by (c) Burgos Artizzu, Xavier P. et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationImatges mèdiques
dc.subject.classificationFetus
dc.subject.otherImaging systems in medicine
dc.subject.otherFetus
dc.titleEvaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
704130.pdf
Mida:
2.93 MB
Format:
Adobe Portable Document Format
Descripció:
Original Article
Carregant...
Miniatura
Nom:
704130_C.pdf
Mida:
676.1 KB
Format:
Adobe Portable Document Format
Descripció:
Correction