Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Axel Champredon Le Mercier, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218121

Learning theory and out of distribution detection

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Nowadays, Machines are starting to have a really important relevance in automation tasks. Learning could be considered as one of the hardest tasks we can encounter. The goal of this work is to introduce the theoretical foundations of this topic. After a short introduction on general learning and machine learning in chapter 1, we will introduce the fundamental concepts of Learning Theory in chapter 2, we will find what learning formally means and under which conditions a scenario can be learnable. In the last chapter we will introduce a pretty recent topic: Out of Distribution detection. A theory that appeared for the first time in 2017 and tries to formalize whether or not it would be possible for a machine to detect if we are trying to make predictions on data which it hasn’t been trained for. Again, we will try to find conditions under which a machine could learn this skill.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Josep Vives i Santa Eulàlia i Santi Seguí Mesquida

Citació

Citació

CHAMPREDON LE MERCIER, Axel. Learning theory and out of distribution detection. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/218121]

Exportar metadades

JSON - METS

Compartir registre