Resolució numèrica d’equacions en derivades parcials parabòliques

dc.contributor.advisorJorba i Monte, Àngel
dc.contributor.authorAlarcón Pradal, Andreu
dc.date.accessioned2016-01-08T10:04:43Z
dc.date.available2016-01-08T10:04:43Z
dc.date.issued2015-06-30
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2015, Director: Àngel Jorba i Monteca
dc.description.abstractA partial differential equation (PDE) is an equation that contains an unknown function with more than one variable and some of its partial derivatives. We can classify PDE’s in linears or nonlinears and by the order of its derivatives as well. Within these classifications stand out linear PDE’s of second order, because they can modelling a lot of physical phenomena. We find three groups inside this set: • Elliptical equations, which appear in heat transmission under stationary conditions problems, particle difussion or the vibration in a membrane. • Parabolic equations, which appear in the same kind of problems than before but with one exception, they change over time now. • Hyperbolic equations, which appear in problems about mass transport in fluids, wave phenomena, among others. In this work, we will study several types of boundary value problems (BVP) of a parabolic equation, the heat equation. BVP consists in finding a function $f\in C^{2}$ that satisfies the conditions of the heat equation and the conditions imposed on the unknown function (or its derivatives) in the boundary of the region we are working on. Frequently, these problems cannot be solved analytically. One of the most used methods these days is the finite element method. This method was developed from the 40’s. The aim of the finite element method is to approximate a weak solution for a BVP from a mount of referency nodes which are located on the region of the problem. To perform this whole process, we will start describing some functional analysis tools that we will need from now on in this work, straightaway we will see the numerical methods that we will use and we will conclude with an example resolution.ca
dc.format.extent49 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/68633
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Andreu Alarcón Pradal, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationProblemes de contorn
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEquacions diferencials parabòliquesca
dc.subject.classificationMètode dels elements finitsca
dc.subject.classificationAnàlisi funcionalca
dc.subject.otherBoundary value problems
dc.subject.otherBachelor's theses
dc.subject.otherParabolic differential equationseng
dc.subject.otherFinite element methodeng
dc.subject.otherFunctional analysiseng
dc.titleResolució numèrica d’equacions en derivades parcials parabòliquesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.14 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria