Dimensionality reduction based on persistence entropy

dc.contributor.advisorCasacuberta, Carles
dc.contributor.advisorFerrà Marcús, Aina
dc.contributor.authorCui, Junhan
dc.date.accessioned2023-10-24T07:19:36Z
dc.date.available2023-10-24T07:19:36Z
dc.date.issued2023-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Carles Casacubertaca
dc.description.abstract[en] In this work we use different methods from algebraic topology, statistics, and data analysis to study a specific data set. This includes tools and analysis methods such as homology, simplicial complexes, persistent homology, bottleneck distance, Wasserstein distance, total persistence, persistence entropy, and directional hierar- chical analysis. Our aim is to study a database generated during a previous neuroscience experiment by Cos et al. (2021). This database is a high-dimensional electroencephalogram (EEG) data set of recordings from 11 participants in a decisionmaking experiment in which three motivational states were induced by manipulating social pressure onto participants. Our goal is to find out the intrinsic dimension of this database, that is, the number of latent variables, and look for subjects in the study population who are significantly different from the rest. This work was inspired by a paper by Ferrà et al. (2023), in which the authors present a new analytical approach using topological data analysis (TDA). Traditional dimensionality reduction methods determine how many dimensions should be retained attempting to preserve variance of the data, while topological data analysis estimates an optimal dimension by studying the data’s topology. While a TDA classifier was used by Ferrà et al., in this work we use directed hierarchical analysis combined with distances between persistence diagrams and persistent entropy to assess the amount of topological variation depending on the ambient dimension.ca
dc.format.extent85 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/203100
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Junhan Cui, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationHomologiaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTopologia algebraicaca
dc.subject.classificationEstadística matemàticaca
dc.subject.otherHomologyen
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic topologyen
dc.subject.otherMathematical statisticsen
dc.titleDimensionality reduction based on persistence entropyca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_cui_junhan.pdf
Mida:
1.55 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria