El Dipòsit Digital ha actualitzat el programari. Qualsevol incidència que trobeu si us plau contacteu amb dipositdigital@ub.edu.

 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c)  Bolancé, C. et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/221797

Conditional likelihood based inference on single-index models for motor insurance claim severity

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Prediction of a traffc accident cost is one of the major problems in motor insurance. To identify the factors that infuence costs is one of the main challenges of actuarial modelling. Telematics data about individual driving patterns could help calculating the expected claim severity in motor insurance. We propose using single-index models to assess the marginal effects of covariates on the claim severity conditional distribution. Thus, drivers with a claim cost distribution that has a long tail can be identifed. These are risky drivers, who should pay a higher insurance premium and for whom preventative actions can be designed. A new kernel approach to estimate the covariance matrix of coeffcients’ estimator is outlined. Its statistical properties are described and an application to an innovative data set containing information on driving styles is presented. The method provides good results when the response variable is skewed.

Descripció

Citació

Citació

BOLANCÉ LOSILLA, Catalina, CAO, Ricardo, GUILLÉN, Montserrat. Conditional likelihood based inference on single-index models for motor insurance claim severity. _Sort (Statistics and Operations Research Transactions)_. 2024. Vol. 48, núm. 235-258. [consulta: 26 de novembre de 2025]. ISSN: 1696-2281. [Disponible a: https://hdl.handle.net/2445/221797]

Exportar metadades

JSON - METS

Compartir registre