Nombres transcendents

dc.contributor.advisorZarzuela, Santiago
dc.contributor.authorHu Zhu, Youwei
dc.date.accessioned2021-05-12T08:59:25Z
dc.date.available2021-05-12T08:59:25Z
dc.date.issued2020-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Santiago Zarzuelaca
dc.description.abstract[en] This project is a chronologic summary of several methods to find if a number is transcendental or not. Some of these results will guide us to very interesting others, such as, that $\pi+e$ or $e \cdot \pi$ is a transcendental number, but never both at the same time. And other methods will provide us the existence of at least a transcendental number in a specific set of numbers.ca
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/177212
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Youwei Hu Zhu, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationNombres transcendentsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificatione (El nombre)ca
dc.subject.classificationPi (Nombre)ca
dc.subject.classificationFuncions exponencialsca
dc.subject.otherTranscendental numbersen
dc.subject.otherBachelor's theses
dc.subject.othere (The number)en
dc.subject.otherPi (Number)en
dc.subject.otherExponential functionsen
dc.titleNombres transcendentsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
177212.pdf
Mida:
558.68 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria