Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian

dc.contributor.authorGarofalo, Nicola
dc.contributor.authorRos, Xavier
dc.date.accessioned2023-02-23T14:02:24Z
dc.date.available2023-02-23T14:02:24Z
dc.date.issued2019-06-05
dc.date.updated2023-02-23T14:02:24Z
dc.description.abstractWe study the singular part of the free boundary in the obstacle problem for the fractional Laplacian, $\min \left\{(-\Delta)^s u, u-\varphi\right\}=0$ in $\mathbb{R}^n$, for general obstacles $\varphi$. Our main result establishes the complete structure and regularity of the singular set. To prove it, we construct new monotonicity formulas of Monneau-type that extend those in those of Garofalo-Petrosyan to all $s \in(0,1)$.
dc.format.extent57 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708573
dc.identifier.issn0213-2230
dc.identifier.urihttps://hdl.handle.net/2445/194048
dc.language.isoeng
dc.publisherEuropean Mathematical Society Publishing House
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.4171/RMI/1087
dc.relation.ispartofRevista Matematica Iberoamericana, 2019, vol. 35, num. 5, p. 1309-1365
dc.relation.urihttps://doi.org/10.4171/RMI/1087
dc.rights(c) European Mathematical Society Publishing House, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationOperadors diferencials parcials
dc.subject.classificationTeoria d'operadors
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationProcessos estocàstics
dc.subject.otherPartial differential operators
dc.subject.otherOperator theory
dc.subject.otherPartial differential equations
dc.subject.otherStochastic processes
dc.titleStructure and regularity of the singular set in the obstacle problem for the fractional Laplacian
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
708573.pdf
Mida:
657.54 KB
Format:
Adobe Portable Document Format