An application of deep learning for exchange rate forecasting

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorSorić, Petar
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2022-01-24T22:03:02Z
dc.date.available2022-01-24T22:03:02Z
dc.date.issued2022
dc.description.abstractThis paper examines the performance of several state-of-the-art deep learning techniques for exchange rate forecasting (deep feedforward network, convolutional network and a long short-term memory). On the one hand, the configuration of the different architectures is clearly detailed, as well as the tuning of the parameters and the regularisation techniques used to avoid overfitting. On the other hand, we design an out-of-sample forecasting experiment and evaluate the accuracy of three different deep neural networks to predict the US/UK foreign exchange rate in the days after the Brexit took effect. Of the three configurations, we obtain the best results with the deep feedforward architecture. When comparing the deep learning networks to time-series models used as a benchmark, the obtained results are highly dependent on the specific topology used in each case. Thus, although the three architectures generate more accurate predictions than the time-series models, the results vary considerably depending on the specific topology. These results hint at the potential of deep learning techniques, but they also highlight the importance of properly configuring, implementing and selecting the different topologies.ca
dc.format.extent44 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/182601
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2022/202201.pdf
dc.relation.ispartofIREA – Working Papers, 2022, IR22/01
dc.relation.ispartofAQR – Working Papers, 2022, AQR22/01
dc.relation.ispartofseries[WP E-IR22/01]ca
dc.relation.ispartofseries[WP E-AQR22/01]
dc.rightscc-by-nc-nd, (c) Clavería González et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationValor (Economia)
dc.subject.classificationXarxes neuronals convolucionals
dc.subject.classificationPrevisió econòmica
dc.subject.otherConvolutional neural networks
dc.subject.otherValue
dc.subject.otherEconomic forecasting
dc.titleAn application of deep learning for exchange rate forecastingca
dc.typeinfo:eu-repo/semantics/workingPaperca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR22_001_Claveria et al.pdf
Mida:
1.81 MB
Format:
Adobe Portable Document Format
Descripció: