Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency

dc.contributor.authorCalleja, Pere
dc.contributor.authorLlerena Garrés, Francesc
dc.contributor.authorSudhölter, Peter
dc.date.accessioned2020-10-23T09:45:03Z
dc.date.available2020-10-23T09:45:03Z
dc.date.issued2020-08
dc.date.updated2020-10-23T09:45:04Z
dc.description.abstractA solution on a set of transferable utility (TU) games satisfies strong aggregate monotonicity (SAM) if every player can improve when the grand coalition becomes richer. It satisfies equal surplus division (ESD) if the solution allows the players to improve equally. We show that the set of weight systems generating weighted prenucleoli that satisfy SAM is open, which implies that for weight systems close enough to any regular system, the weighted prenucleolus satisfies SAM (...)
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699111
dc.identifier.issn0364-765X
dc.identifier.urihttps://hdl.handle.net/2445/171456
dc.language.isoeng
dc.publisherInstitute for Operations Research and Management Sciences
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1287/moor.2019.1022
dc.relation.ispartofMathematics of Operations Research, 2020, vol. 45, num. 3, p. 1056-1068
dc.relation.urihttps://doi.org/10.1287/moor.2019.1022
dc.rights(c) Institute for Operations Research and Management Sciences, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationJocs cooperatius (Matemàtica)
dc.subject.classificationTeoria de jocs
dc.subject.otherCooperative games (Mathematics)
dc.subject.otherGame theory
dc.titleMonotonicity and Weighted Prenucleoli: A Characterization Without Consistency
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699111.pdf
Mida:
204.75 KB
Format:
Adobe Portable Document Format