Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Chen, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/226618

Proximal Algorithms: ISTA and FISTA for L1-Regularized Regression

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Linear regression models are widely used across fileds like medicine, biology, and economics. This work explores the use of proximal gradient methods, particularly the ISTA and its accelerated version, FISTA, which are simple and efficient algorithms for solving optimization problems with non-differentialble penalties such as L1-norm used in Lasso regression. A package called ProxReg was made to make it easier to use the algorithms. It suports prediction and classification tasks with binary, numeric and multinomial target variables using Lasso regression model. And it also includes Ridge, OLS regression, cross-validation tools, and image reconstruction features. The efficacy and performance of the proposed proximal gradient methods are evaluated by comparing them with the Lasso regression results based on the glmnet package coordinate descent method, using real-world and simulated data.

Descripció

Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2024-2025, Tutor: Esteban Vegas Lozano ; Ferran Reverter Comes

Citació

Citació

CHEN, Yinghong. Proximal Algorithms: ISTA and FISTA for L1-Regularized Regression. [consulta: 9 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/226618]

Exportar metadades

JSON - METS

Compartir registre