Proximal Algorithms: ISTA and FISTA for L1-Regularized Regression

dc.contributor.advisorVegas Lozano, Esteban
dc.contributor.advisorReverter Comes, Ferran
dc.contributor.authorChen, YingHong
dc.date.accessioned2026-02-04T11:43:50Z
dc.date.available2026-02-04T11:43:50Z
dc.date.issued2025
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2024-2025, Tutor: Esteban Vegas Lozano ; Ferran Reverter Comes
dc.description.abstractLinear regression models are widely used across fileds like medicine, biology, and economics. This work explores the use of proximal gradient methods, particularly the ISTA and its accelerated version, FISTA, which are simple and efficient algorithms for solving optimization problems with non-differentialble penalties such as L1-norm used in Lasso regression. A package called ProxReg was made to make it easier to use the algorithms. It suports prediction and classification tasks with binary, numeric and multinomial target variables using Lasso regression model. And it also includes Ridge, OLS regression, cross-validation tools, and image reconstruction features. The efficacy and performance of the proposed proximal gradient methods are evaluated by comparing them with the Lasso regression results based on the glmnet package coordinate descent method, using real-world and simulated data.
dc.format.extent59 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/226618
dc.language.isoeng
dc.rightscc-by-nc-nd (c) Chen, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationAnàlisi de regressiócat
dc.subject.classificationEstadísticacat
dc.subject.classificationTreballs de fi de grau
dc.subject.otherMachine learningeng
dc.subject.otherRegression analysiseng
dc.subject.otherStatisticseng
dc.subject.otherBachelor's theseseng
dc.titleProximal Algorithms: ISTA and FISTA for L1-Regularized Regression
dc.typeinfo:eu-repo/semantics/bachelorThesis

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TGF-EST_Chen Yinghong_2025.pdf
Mida:
2.16 MB
Format:
Adobe Portable Document Format