Carregant...
Tipus de document
Document de treballData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/126954
Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Estimation in single-index models for risk assessment is developed. Statistical properties are given and an application to estimate the cost of traffic accidents in an innovative insurance data set that has information on driving style is presented. A new kernel approach for the estimator covariance matrix is provided. Both, the simulation study and the real case show that the method provides the best results when data are highly skewed and when the conditional distribution is of interest. Supplementary materials containing appendices are available online.
Matèries (anglès)
Citació
Citació
BOLANCÉ LOSILLA, Catalina, CAO, Ricardo, GUILLÉN, Montserrat. Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data. _IREA – Working Papers_. 2018. Vol. IR18/29. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/126954]