Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Bolancé Losilla et al., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/126954

Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Estimation in single-index models for risk assessment is developed. Statistical properties are given and an application to estimate the cost of traffic accidents in an innovative insurance data set that has information on driving style is presented. A new kernel approach for the estimator covariance matrix is provided. Both, the simulation study and the real case show that the method provides the best results when data are highly skewed and when the conditional distribution is of interest. Supplementary materials containing appendices are available online.

Citació

Citació

BOLANCÉ LOSILLA, Catalina, CAO, Ricardo, GUILLÉN, Montserrat. Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data. _IREA – Working Papers_. 2018. Vol.  IR18/29. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/126954]

Exportar metadades

JSON - METS

Compartir registre