Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/227172
Reproducing Kernel Hilbert spaces of analytic functions
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This thesis focuses on the study of reproducing kernel Hilbert spaces (RKHS), which play a fundamental role in complex analysis as well as in other fields such as statistics and machine learning. It presents the general theory of RKHS, including key results that characterize these spaces and their properties, such as the representation of kernels in terms of orthonormal bases. The study then focuses on examples of RKHS consisting of holomorphic functions, such as the Hardy, Bergman, Dirichlet, and Fock spaces, for which the reproducing kernels are computed and their RKHS structure is established. One of the key aspects of the work is the study of multipliers, functions that preserve the structure of the space under pointwise multiplication. The thesis concludes with an analysis of the Nevanlinna-Pick interpolation problem in the unit disk, a classical topic in complex analysis, providing a proof based on analytic techniques and Blaschke products.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Matteo Levi
Matèries (anglès)
Citació
Col·leccions
Citació
AGHZAF EL HACHIMI, Mouna. Reproducing Kernel Hilbert spaces of analytic functions. [consulta: 21 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/227172]