Weighted BMO and Hankel operators between weighted Bergman spaces

dc.contributor.authorPau, Jordi
dc.contributor.authorZhao, Ruhan
dc.contributor.authorZhu, Keke
dc.date.accessioned2017-02-16T10:16:38Z
dc.date.available2017-02-16T10:16:38Z
dc.date.issued2016
dc.date.updated2017-02-16T10:16:38Z
dc.description.abstractWe introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of $\Bbb{C}^n$ and use them to characterize complex functions $f$ such that the big Hankel operators $H_f$ and $H\overline{_f}$ are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function $f$ is holomorphic, we characterize bounded and compact Hankel operators $H\overline{_f}$ between weighted Bergman spaces. In particular, this resolves two questions left open in [7, 12].
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec658912
dc.identifier.issn0022-2518
dc.identifier.urihttps://hdl.handle.net/2445/107046
dc.language.isoeng
dc.publisherIndiana University
dc.relation.isformatofVersió preprint del document publicat a: https://doi.org/10.1512/iumj.2016.65.5882
dc.relation.ispartofIndiana University Mathematics Journal, 2016, vol. 65, num. 5, p. 1639-1673
dc.relation.urihttps://doi.org/10.1512/iumj.2016.65.5882
dc.rights(c) Indiana University Mathematics Journal, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationOperadors lineals
dc.subject.classificationTeoria d'operadors
dc.subject.classificationFuncions de diverses variables complexes
dc.subject.otherLinear operators
dc.subject.otherOperator theory
dc.subject.otherFunctions of several complex variables
dc.titleWeighted BMO and Hankel operators between weighted Bergman spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
658912.pdf
Mida:
416.69 KB
Format:
Adobe Portable Document Format