Interpolation and sampling arrays in spaces of polynomials

dc.contributor.advisorMassaneda Clares, Francesc Xavier
dc.contributor.advisorOrtega Cerdà, Joaquim
dc.contributor.authorCruz Rodríguez, Carlos Arturo
dc.date.accessioned2017-02-28T11:45:38Z
dc.date.available2017-02-28T11:45:38Z
dc.date.issued2016-06-21
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Francesc Xavier Massaneda Clares i Joaquim Ortega Cerdàca
dc.description.abstractWe study the discretisation procedure of homogeneous polynomials in the unit sphere $\mathbb{S}\cong \mathbb{CP}^1$. This can be seen as a basic model of a more general problem of discretisation of sections of holomorphic line bundles over compact complex manifolds. Our aim is to obtain geometric necessary and sufficient conditions describing the discretising sequences. An important model for such sequences are the so-called Fekete arrays, which can be seen as nets adapted to the geometry of the sphere. The tools used in such description go back to the signal processing theory pioneered by Beurling and Landau.ca
dc.format.extent60 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/107528
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Carlos Arturo Cruz Rodrı́guez, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationFuncions de variables complexescat
dc.subject.classificationTeoria del potencial (Matemàtica)cat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationEspais funcionalsca
dc.subject.otherFunctions of complex variableseng
dc.subject.otherPotential theory (Mathematics)eng
dc.subject.otherMaster's theseseng
dc.subject.otherFunction spaceseng
dc.titleInterpolation and sampling arrays in spaces of polynomialsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
613.86 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria