Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Dolcet, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/180269

Unsupervised machine learning techniques for chemical analysis in spectroscopic stellar surveys

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this work, we use the dimensionality reduction technique UMAP (Uniform Manifold Approximation and Projection) and a clustering algorithm (HDSCAN) on a large sample of stellar abundance ratios from a high-quality sample of the APOGEE DR16 survey (16000 red clump stars). We are able to reliably differentiate groups of stars corresponding with the chemical thick disk and thin disc, as well as a group corresponding to high α metal rich stars, and groups with anomalous abundances of certain elements, some of which are due to low precision on the abundances of P, Co, and Na determined by the pipeline

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutor: Friedrich Anders

Citació

Citació

DOLCET MONÉS, Jaume. Unsupervised machine learning techniques for chemical analysis in spectroscopic stellar surveys. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/180269]

Exportar metadades

JSON - METS

Compartir registre