Unsupervised machine learning techniques for chemical analysis in spectroscopic stellar surveys

dc.contributor.advisorAnders, Friedrich
dc.contributor.authorDolcet Monés, Jaume
dc.date.accessioned2021-09-28T14:01:42Z
dc.date.available2021-09-28T14:01:42Z
dc.date.issued2021-02
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutor: Friedrich Andersca
dc.description.abstractIn this work, we use the dimensionality reduction technique UMAP (Uniform Manifold Approximation and Projection) and a clustering algorithm (HDSCAN) on a large sample of stellar abundance ratios from a high-quality sample of the APOGEE DR16 survey (16000 red clump stars). We are able to reliably differentiate groups of stars corresponding with the chemical thick disk and thin disc, as well as a group corresponding to high α metal rich stars, and groups with anomalous abundances of certain elements, some of which are due to low precision on the abundances of P, Co, and Na determined by the pipelineca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/180269
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Dolcet, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationEstelscat
dc.subject.classificationComposició químicacat
dc.subject.classificationTreballs de fi de grau
dc.subject.otherMachine learningeng
dc.subject.otherStarseng
dc.subject.otherChemical compositioneng
dc.subject.otherBachelor's theses
dc.titleUnsupervised machine learning techniques for chemical analysis in spectroscopic stellar surveysca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
DOLCET MONÉS JAUME_3085515_assignsubmission_file_TFG-Dolcet-Monés-Jaume.pdf
Mida:
3.74 MB
Format:
Adobe Portable Document Format
Descripció: