The (Anti)aromatic Properties of Cyclo[n]Carbons: Myth or Reality?

dc.contributor.authorStasyuk, O. A.
dc.contributor.authorGeorge, G.
dc.contributor.authorCurutchet Barat, Carles E.
dc.contributor.authorPlasser, F.
dc.contributor.authorStasyuk, A. J.
dc.date.accessioned2026-01-22T07:53:50Z
dc.date.available2026-01-22T07:53:50Z
dc.date.issued2025-12-05
dc.date.updated2026-01-22T07:53:50Z
dc.description.abstractRecent advances in on-surface chemistry have enabled the synthesis and structural characterization of even-numbered cyclo[n]carbons, traditionally classified as either doubly aromatic (<em>n</em> = 4k + 2) or doubly antiaromatic (<em>n</em> = 4k) based on their in-plane and out-of-plane π-electron circuits. However, recent studies have increasingly questioned this classification, suggesting instead that these molecules are more accurately described as non-aromatic. In this work, we computationally examine the electron affinities and (anti)aromatic character of cyclo[n]carbons with <em>n</em> = 16–30 using energetic, structural, and electronic aromaticity descriptors. Adiabatic electron affinity (AEA) analysis reveals a high degree of uniformity across the series of both nominally aromatic and antiaromatic members. Aromatic stabilization energy (ASE) values, derived from homodesmotic and disproportionation reactions, indicate slight destabilization only for C<sub>16</sub> and C<sub>20</sub>, and low stabilization for the remaining systems. In particular, ASE is less than 2 kcal/mol for cyclo[n]carbons with <em>n</em> ≥ 24. This suggests that neither aromatic nor antiaromatic character significantly contributes to the thermodynamic stability of larger cyclocarbons. EDDB analysis further supports this conclusion, with only about 22%–27% of π-electrons participating in delocalization. While delocalization is slightly greater in cyclo[n]carbons with <em>n</em> = 4k + 2, the difference diminishes with increasing size. Upon two-electron reduction to the dianionic state, all cyclo[n]carbons exhibit bond length equalization and increased delocalization. These results suggest that only small cyclo[n]carbons (<em>n</em> < 24) can be classified as weakly (anti)aromatic, while larger cyclo[n]carbons (<em>n</em> ≥ 24) are more appropriately classified as non-aromatic systems. The aromaticity of all considered cyclocarbons becomes more pronounced in corresponding dianionic forms due to cooperative structural and electronic effects. Thus, this work provides a unified framework for interpreting and predicting the electronic behavior of cyclocarbons.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec764175
dc.identifier.issn0192-8651
dc.identifier.urihttps://hdl.handle.net/2445/225924
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/jcc.70283
dc.relation.ispartofJournal of Computational Chemistry, 2025, vol. 46, num.31
dc.relation.urihttps://doi.org/10.1002/jcc.70283
dc.rightscc-by (c) Carles E. Curutchet Barat, et al. , 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationCompostos aromàtics
dc.subject.classificationHidrocarburs aromàtics policíclics
dc.subject.classificationEstructura química
dc.subject.otherAromatic compounds
dc.subject.otherPolycyclic aromatic hydrocarbons
dc.subject.otherChemical structure
dc.titleThe (Anti)aromatic Properties of Cyclo[n]Carbons: Myth or Reality?
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
912790.pdf
Mida:
1.63 MB
Format:
Adobe Portable Document Format