Carregant...
Tipus de document
Objecte de conferènciaVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/219966
A study on the role of radiomics feature stability in predicting breast cancer subtypes
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Imaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification.
Matèries (anglès)
Citació
Citació
CAMA, Isabella, GUZMAN REQUENA, Alejandro, GARBARINO, Sara, CAMPI, Cristina, LEKADIR, Karim, DÍAZ, Oliver. A study on the role of radiomics feature stability in predicting breast cancer subtypes. _Comunicació a: Proc. SPIE 13174_. 17th International Workshop on Breast Imaging (IWBI 2024). Vol. 131741O (29 May 2024). [consulta: 27 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/219966]