A study on the role of radiomics feature stability in predicting breast cancer subtypes

dc.contributor.authorCama, Isabella
dc.contributor.authorGuzman Requena, Alejandro
dc.contributor.authorGarbarino, Sara
dc.contributor.authorCampi, Cristina
dc.contributor.authorLekadir, Karim, 1977-
dc.contributor.authorDíaz, Oliver
dc.date.accessioned2025-03-25T08:45:10Z
dc.date.available2025-03-25T08:45:10Z
dc.date.issued2024
dc.description.abstractImaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification.ca
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/219966
dc.language.isoengca
dc.publisherSPIEca
dc.relation.isformatofVersió postprint de la comunicació publicada a: https://doi.org/10.1117/12.3027015
dc.relation.ispartofComunicació a: Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024), 131741O (29 May 2024)
dc.relation.ispartofseriesProceedings SPIEca
dc.relation.ispartofseries13174ca
dc.relation.urihttps://doi.org/10.1117/12.3027015
dc.rights(c) SPIE, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)
dc.subject.classificationCàncer de mama
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationAprenentatge automàticca
dc.subject.otherBreast cancer
dc.subject.otherMagnetic resonance imaging
dc.subject.otherMachine learningen
dc.titleA study on the role of radiomics feature stability in predicting breast cancer subtypesca
dc.typeinfo:eu-repo/semantics/conferenceObjectca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
SPIE_2 SPIE Abstract_submission___IWBI_2024_Alejandro_Isabella (1).pdf
Mida:
752.41 KB
Format:
Adobe Portable Document Format
Descripció: