Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/110363
Lie groups, Lie algebras, representations and the Eightfold way
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Lie groups and Lie algebras are the basic objects of study of this work. Lie studied them as continuous transformations of partial differential equations, emulating Galois work with polynomial equations. The theory went much further thanks to Killing, Cartan and Weyl and now the wealth of properties of Lie groups makes them a central topic in modern mathematics. This richness comes from the merging of two initially unrelated mathematical structures such as the group structure and the smooth structure of a manifold, which turns out to impose many restrictions. For instance, a closed subgroup of a Lie group is automatically an embedded submanifold of the Lie group. Symmetries are related to groups, in particular continuous symmetries are related to Lie groups and whence, by Noether’s theorem, its importance in modern physics.
In this work, we focus on the Lie group - Lie algebra relationship and on the representation theory of Lie groups through the representations of Lie algebras. Especially, we analyze the complex representations of Lie algebras related to compact simply connected Lie groups. With this purpose, we first study the theory of covering spaces and differential forms on Lie groups. Finally, an application to particle physics is presented which shows the role played by the representation theory of SU(3) on flavour symmetry and the theory
of quarks.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Ricardo García López
Matèries (anglès)
Citació
Col·leccions
Citació
ROSSELLÓ GÓMEZ, Martí. Lie groups, Lie algebras, representations and the Eightfold way. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/110363]