Brill-Noether theory of stable vector bundles on ruled surfaces

dc.contributor.authorCosta Farràs, Laura
dc.contributor.authorMacías Tarrío, Irene
dc.date.accessioned2026-01-15T09:09:10Z
dc.date.available2026-01-15T09:09:10Z
dc.date.issued2024-05-11
dc.date.updated2026-01-15T09:09:10Z
dc.description.abstractLet $X$ be a ruled surface over a nonsingular curve $C$ of genus $g \geq 0$. Let $M_H:=M_{X, H}\left(2 ; c_1, c_2\right)$ be the moduli space of $H$-stable rank 2 vector bundles $E$ on $X$ with fixed Chern classes $c_i:=c_i(E)$ for $i=1,2$. The main goal of this paper is to contribute to a better understanding of the geometry of the moduli space $M_H$ in terms of its Brill-Noether locus $W_H^k\left(2 ; c_1, c_2\right)$, whose points correspond to stable vector bundles in $M_H$ having at least $k$ independent sections. We deal with the non-emptiness of this Brill-Noether locus, getting in most of the cases sharp bounds for the values of $k$ such that $W_H^k\left(2 ; c_1, c_2\right)$ is non-empty.
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751556
dc.identifier.issn1660-5446
dc.identifier.urihttps://hdl.handle.net/2445/225522
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00009-024-02657-6
dc.relation.ispartofMediterranean Journal of Mathematics, 2024, vol. 21
dc.rightscc-by (c) Laura Costa Farràs, et al. 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationGeometria algebraica
dc.subject.classificationTopologia algebraica
dc.subject.classificationGeometria diferencial
dc.subject.classificationGeometria hiperbòlica
dc.subject.otherAlgebraic geometry
dc.subject.otherAlgebraic topology
dc.subject.otherDifferential geometry
dc.subject.otherHyperbolic geometry
dc.titleBrill-Noether theory of stable vector bundles on ruled surfaces
dc.typeinfo:eu-repo/semantics/article
dc.typeposar info:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870044.pdf
Mida:
447.93 KB
Format:
Adobe Portable Document Format