Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Arribas Bel et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195068

Building(s and) cities: Delineating urban areas with a machine learning algorithm

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This paper proposes a novel methodology for delineating urban areas based on a machine learning algorithm that groups buildings within portions of space of sufficient density. To do so, we use the precise geolocation of all 12 million buildings in Spain. We exploit building heights to create a new dimension for urban areas, namely, the vertical land, which provides a more accurate measure of their size. To better understand their internal structure and to illustrate an additional use for our algorithm, we also identify employment centers within the delineated urban areas. We test the robustness of our method and compare our urban areas to other delineations obtained using administrative borders and commuting-based patterns. We show that: 1) our urban areas are more similar to the commuting-based delineations than the administrative boundaries but that they are more precisely measured; 2) when analyzing the urban areas' size distribution, Zipf's law appears to hold for their population, surface and vertical land; and 3) the impact of transportation improvements on the size of the urban areas is not underestimated.

Citació

Citació

ARRIBAS-BEL, Daniel, GARCÍA LÓPEZ, Miquel-àngel, VILADECANS MARSAL, Elisabet. Building(s and) cities: Delineating urban areas with a machine learning algorithm. _Journal of Urban Economics_. 2021. Vol. 125, núm. 103217, pàgs. 1-20. [consulta: 21 de gener de 2026]. ISSN: 0094-1190. [Disponible a: https://hdl.handle.net/2445/195068]

Exportar metadades

JSON - METS

Compartir registre