An NMR-based metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study

dc.contributor.authorVázquez Fresno, Rosa
dc.contributor.authorLlorach, Rafael
dc.contributor.authorUrpí Sardà, Mireia
dc.contributor.authorKhymenets, Olha
dc.contributor.authorBulló, Mònica
dc.contributor.authorCorella Piquer, Dolores
dc.contributor.authorFitó Colomer, Montserrat
dc.contributor.authorMartínez-González, Miguel Ángel, 1957-
dc.contributor.authorEstruch Riba, Ramon
dc.contributor.authorAndrés Lacueva, Ma. Cristina
dc.date.accessioned2016-02-17T15:44:23Z
dc.date.available2016-02-17T15:44:23Z
dc.date.issued2014-08-11
dc.date.updated2016-02-17T15:44:23Z
dc.description.abstractThe development of robust biomarkers of consumption would improve the classification of participants with regard to their dietary exposure. In addition, validation of them in free-living individuals remains an important challenge. The aim of this study is to assess wine intake biomarkers using an NMR metabolomic approach to measure the utility of these biomarkers in a wine interventional study (WIS, n = 56) and also to evaluate them in a free-living individuals (PREDIMED study, n = 91). Nine metabolites showed a significantly higher presence in urinary excretion in WIS after wine intake: five food metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and ethanol); one related to the endogenous response to wine exposure (3-methyl-2-oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) curve for each single metabolite were evaluated and exhibited areas under the curves (AUC) between 67.4 and 86.3 % when they were evaluated individually. Then, a logistic regression model was fitted to generate a combined-biomarkers model using these metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7 % in WIS. Similarly, the AUC in the PREDIMED study was 92.4 %. Results showed that a model combining tartrate-EtG is more useful for evaluating exposure to wine than single biomarkers, both in interventional studies and epidemiological data. To our knowledge, this is the first time that a combined-biomarker model using an NMR platform in wine biomarkers' research has been generated and reproduced in a free-living population.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec647357
dc.identifier.issn1573-3882
dc.identifier.urihttps://hdl.handle.net/2445/69557
dc.language.isoeng
dc.publisherSpringer Science + Business Media
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1007/s11306-014-0735-x
dc.relation.ispartofMetabolomics, 2014, vol. 11, num. 4, p. 797-806
dc.relation.urihttp://dx.doi.org/10.1007/s11306-014-0735-x
dc.rights(c) Springer Science + Business Media, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
dc.subject.classificationVi
dc.subject.classificationRessonància magnètica nuclear
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationNutrició
dc.subject.classificationMetabòlits
dc.subject.otherWine
dc.subject.otherNuclear magnetic resonance
dc.subject.otherBiochemical markers
dc.subject.otherNutrition
dc.subject.otherMetabolites
dc.titleAn NMR-based metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
647357.pdf
Mida:
769.12 KB
Format:
Adobe Portable Document Format