Triple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added value of Cl isotope ratios to assess herbicide degradation

dc.contributor.authorTorrentó, Clara
dc.contributor.authorPonsin, V.
dc.contributor.authorLihl, C.
dc.contributor.authorHofstetter, T.B.
dc.contributor.authorBaran, N.
dc.contributor.authorElsner, M.
dc.contributor.authorHunkeler, D.
dc.date.accessioned2021-10-26T10:04:57Z
dc.date.available2022-10-19T05:10:27Z
dc.date.issued2021-10-19
dc.date.updated2021-10-26T10:04:57Z
dc.description.abstractMultielement isotope fractionation studies to assess pollutant transformation are well-established for point-source pollution but are only emerging for diffuse pollution by micropollutants like pesticides. Specifically, chlorine isotope fractionation is hardly explored but promising, because many pesticides contain only few chlorine atoms so that 'undiluted' position-specific Cl isotope effects can be expected in compound-average data. This study explored combined Cl, N, and C isotope fractionation to sensitively detect biotic and abiotic transformation of the widespread herbicides and groundwater contaminants acetochlor, metolachlor, and atrazine. For chloroacetanilides, abiotic hydrolysis pathways studied under acidic, neutral, and alkaline conditions as well as biodegradation in two soils resulted in pronounced Cl isotope fractionation (εCl from −5.0 ± 2.3 to −6.5 ± 0.7¿). The characteristic dual C-Cl isotope fractionation patterns (ΛC-Cl from 0.39 ± 0.15 to 0.67 ± 0.08) reveal that Cl isotope analysis provides a robust indicator of chloroacetanilide degradation. For atrazine, distinct ΛC-Cl values were observed for abiotic hydrolysis (7.4 ± 1.9) compared to previous reports for biotic hydrolysis and oxidative dealkylation (1.7 ± 0.9 and 0.6 ± 0.1, respectively). The 3D isotope approach allowed differentiating transformations that would not be distinguishable based on C and N isotope data alone. This first data set on Cl isotope fractionation in chloroacetanilides, together with new data in atrazine degradation, highlights the potential of using compound-specific chlorine isotope analysis for studying in situ pesticide degradation.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec715369
dc.identifier.issn0013-936X
dc.identifier.urihttps://hdl.handle.net/2445/180808
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.est.1c03981
dc.relation.ispartofEnvironmental Science & Technology, 2021, vol. 55, num. 20, p. 13891-13901
dc.relation.urihttps://doi.org/10.1021/acs.est.1c03981
dc.rights(c) American Chemical Society , 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)
dc.subject.classificationPlaguicides
dc.subject.classificationContaminació dels sòls
dc.subject.classificationIsòtops
dc.subject.classificationHidròlisi
dc.subject.otherPesticides
dc.subject.otherSoil pollution
dc.subject.otherIsotopes
dc.subject.otherHydrolysis
dc.titleTriple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added value of Cl isotope ratios to assess herbicide degradation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
715369.pdf
Mida:
3.02 MB
Format:
Adobe Portable Document Format