Carregant...
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188898
Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Ustekinumab has shown efficacy in Crohn's Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients' data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index <= 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.
Matèries (anglès)
Citació
Citació
CHAPARRO, María, BASTON REY, Iria, FERNÁNDEZ SALGADO, Estela, GONZÁLEZ GARCÍA, Javier, RAMOS, Laura, DIZ LOIS PALOMARES, María teresa, ARGÜELLES ARIAS, Federico, IGLESIAS FLORES, Eva, CABELLO, Mercedes, RUBIO ITURRIA, Saioa, NÚÑEZ ORTIZ, Andrea, CHARRO, Mara, GINARD, Daniel, DUEÑAS SADORNIL, Carmen, MERINO OCHOA, Olga, BUSQUETS, David, IYO, Eduardo, GUTIÉRREZ CASBAS, Ana, RAMÍREZ DE LA PISCINA, Patricia, BOSCÁ WATTS, Marta maia, ARROYO, Maite, GARCÍA, María josé, HINOJOSA, Esther, GORDILLO, Jordi, MARTÍNEZ MONTIEL, Pilar, VELAYOS JIMÉNEZ, Benito, QUÍLEZ IVORRA, Cristina, VÁZQUEZ MORÓN, Juan maría, HUGUET, José maría, GONZÁLEZ LAMA, Yago, MUÑAGORRI SANTOS, Ana isabel, AMO, Víctor manuel, MARTÍN ARRANZ, María dolores, BERMEJO, Fernando, MARTÍNEZ CADILLA, Jesús, RUBÍN DE CÉLIX, Cristina, FRADEJAS SALAZAR, Paola, LÓPEZ SAN ROMÁN, Antonio, JIMÉNEZ, Nuria, GARCÍA LÓPEZ, Santiago, FIGUEROLA, Anna, JIMÉNEZ, Itxaso, MARTÍNEZ CEREZO, Francisco josé, TAXONERA, Carlos, VARELA, Pilar, FRANCISCO, Ruth de, MONFORT, David, MOLINA ARRIERO, Gema, HERNÁNDEZ CAMBA, Alejandro, GARCÍA ALONSO, Francisco javier, VAN DOMSELAAR, Manuel, PAJARES VILLARROYA, Ramón, NÚÑEZ, Alejandro, RODRÍGUEZ MORANTA, Francisco, MARÍN JIMÉNEZ, Ignacio, ROBLES ALONSO, Virginia, MARTÍN RODRÍGUEZ, María del mar, CAMO MONTERDE, Patricia, GARCÍA TERCERO, Iván, NAVARRO LLAVAT, Mercedes, GARCÍA, Lara arias, HERVÍAS CRUZ, Daniel, KLOSS, Sebastian, PASSEY, Alun, NOVELLA, Cynthia, VISPO, Eugenia, BARREIRO DE ACOSTA, Manuel, GISBERT, Javier p.. Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab. _Journal of Clinical Medicine_. 2022. Vol. 11, núm. 15, pàgs. 4518. [consulta: 8 de gener de 2026]. ISSN: 2077-0383. [Disponible a: https://hdl.handle.net/2445/188898]