Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab

dc.contributor.authorChaparro, María
dc.contributor.authorBaston Rey, Iria
dc.contributor.authorFernández Salgado, Estela
dc.contributor.authorGonzález García, Javier
dc.contributor.authorRamos, Laura
dc.contributor.authorDiz Lois Palomares, María Teresa
dc.contributor.authorArgüelles Arias, Federico
dc.contributor.authorIglesias Flores, Eva
dc.contributor.authorCabello, Mercedes
dc.contributor.authorRubio Iturria, Saioa
dc.contributor.authorNúñez Ortiz, Andrea
dc.contributor.authorCharro, Mara
dc.contributor.authorGinard, Daniel
dc.contributor.authorDueñas Sadornil, Carmen
dc.contributor.authorMerino Ochoa, Olga
dc.contributor.authorBusquets, David
dc.contributor.authorIyo, Eduardo
dc.contributor.authorGutiérrez Casbas, Ana
dc.contributor.authorRamírez de la Piscina, Patricia
dc.contributor.authorBoscá Watts, Marta Maia
dc.contributor.authorArroyo, Maite
dc.contributor.authorGarcía, María José
dc.contributor.authorHinojosa, Esther
dc.contributor.authorGordillo, Jordi
dc.contributor.authorMartínez Montiel, Pilar
dc.contributor.authorVelayos Jiménez, Benito
dc.contributor.authorQuílez Ivorra, Cristina
dc.contributor.authorVázquez Morón, Juan María
dc.contributor.authorHuguet, José María
dc.contributor.authorGonzález Lama, Yago
dc.contributor.authorMuñagorri Santos, Ana Isabel
dc.contributor.authorAmo, Víctor Manuel
dc.contributor.authorMartín Arranz, María Dolores
dc.contributor.authorBermejo, Fernando
dc.contributor.authorMartínez Cadilla, Jesús
dc.contributor.authorRubín de Célix, Cristina
dc.contributor.authorFradejas Salazar, Paola
dc.contributor.authorLópez San Román, Antonio
dc.contributor.authorJiménez, Nuria
dc.contributor.authorGarcía López, Santiago
dc.contributor.authorFiguerola, Anna
dc.contributor.authorJiménez, Itxaso
dc.contributor.authorMartínez Cerezo, Francisco José
dc.contributor.authorTaxonera, Carlos
dc.contributor.authorVarela, Pilar
dc.contributor.authorFrancisco, Ruth de
dc.contributor.authorMonfort, David
dc.contributor.authorMolina Arriero, Gema
dc.contributor.authorHernández Camba, Alejandro
dc.contributor.authorGarcía Alonso, Francisco Javier
dc.contributor.authorVan Domselaar, Manuel
dc.contributor.authorPajares Villarroya, Ramón
dc.contributor.authorNúñez, Alejandro
dc.contributor.authorRodríguez Moranta, Francisco
dc.contributor.authorMarín Jiménez, Ignacio
dc.contributor.authorRobles Alonso, Virginia
dc.contributor.authorMartín Rodríguez, María Del Mar
dc.contributor.authorCamo Monterde, Patricia
dc.contributor.authorGarcía Tercero, Iván
dc.contributor.authorNavarro Llavat, Mercedes
dc.contributor.authorGarcía, Lara Arias
dc.contributor.authorHervías Cruz, Daniel
dc.contributor.authorKloss, Sebastian
dc.contributor.authorPassey, Alun
dc.contributor.authorNovella, Cynthia
dc.contributor.authorVispo, Eugenia
dc.contributor.authorBarreiro de Acosta, Manuel
dc.contributor.authorGisbert, Javier P.
dc.date.accessioned2022-09-12T10:15:53Z
dc.date.available2022-09-12T10:15:53Z
dc.date.issued2022-08-03
dc.date.updated2022-08-25T11:09:54Z
dc.description.abstractUstekinumab has shown efficacy in Crohn's Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients' data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index <= 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2077-0383
dc.identifier.pmid35956133
dc.identifier.urihttps://hdl.handle.net/2445/188898
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/jcm11154518
dc.relation.ispartofJournal of Clinical Medicine, 2022, vol. 11, num. 15, p. 4518
dc.relation.urihttps://doi.org/10.3390/jcm11154518
dc.rightscc by (c) Chaparro, María et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMalaltia de Crohn
dc.subject.classificationFactors de risc en les malalties
dc.subject.otherCrohn's disease
dc.subject.otherRisk factors in diseases
dc.titleUsing Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
jcm-11-04518-v2.pdf
Mida:
1.47 MB
Format:
Adobe Portable Document Format