Pairing of zeros and critical points for random polynomials

dc.contributor.advisorMassaneda Clares, Francesc Xavier
dc.contributor.authorde la Calle Vicente, Guillem
dc.date.accessioned2022-04-19T09:34:22Z
dc.date.available2022-04-19T09:34:22Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Francesc Xavier Massaneda Claresca
dc.description.abstract[en] In this project we deal with random holomorphic polynomials $p_{N}$. Specifically, we study the relationship between zeros and critical points of $p_{N}$ considering two different probabilistic models. The first one is based on chosing independently and with uniform probability $N$ random points that will be the zeros of our polynomial $p_{N}$. The second model is that of the so-called parabolic Gaussian Analytic Function. In this second model, the distribution of points is more rigid, and the striking phenomenon continues to be observed: zeros and critical points appear, with high probability, in pairs.ca
dc.format.extent57 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/184995
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Guillem de la Calle Vicente, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions de variables complexesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria geomètrica de funcionsca
dc.subject.classificationProcessos estocàsticsca
dc.subject.classificationPolinomisca
dc.subject.otherFunctions of complex variablesen
dc.subject.otherBachelor's theses
dc.subject.otherGeometric function theoryen
dc.subject.otherStochastic processesen
dc.subject.otherPolynomialsen
dc.titlePairing of zeros and critical points for random polynomialsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_guillem_de_la_calle.pdf
Mida:
1.57 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria