El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Iborra Egea, Oriol et al, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/182319

Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression.

Descripció

Citació

Citació

IBORRA EGEA, Oriol, GÁLVEZ MONTÓN, Carolina, PRAT VIDAL, Cristina, ROURA, Santiago, SOLER BOTIJA, Carolina, REVUELTA LÓPEZ, Elena, FERRER CORRIU, Gemma, SEGÚ VERGÉS, Cristina, MELLADO BERGILLOS, Araceli, GÓMEZ PUCHADES, Pol, GASTELURRUTIA, Paloma, BAYÉS GENÍS, Antoni. Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction. _Cells_. 2021. Vol. 10, núm. 12. [consulta: 1 de desembre de 2025]. ISSN: 2073-4409. [Disponible a: https://hdl.handle.net/2445/182319]

Exportar metadades

JSON - METS

Compartir registre