El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Deep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction

dc.contributor.authorIborra Egea, Oriol
dc.contributor.authorGálvez Montón, Carolina
dc.contributor.authorPrat Vidal, Cristina
dc.contributor.authorRoura, Santiago
dc.contributor.authorSoler Botija, Carolina
dc.contributor.authorRevuelta López, Elena
dc.contributor.authorFerrer Corriu, Gemma
dc.contributor.authorSegú Vergés, Cristina
dc.contributor.authorMellado Bergillos, Araceli
dc.contributor.authorGómez Puchades, Pol
dc.contributor.authorGastelurrutia, Paloma
dc.contributor.authorBayés Genís, Antoni
dc.date.accessioned2022-01-13T18:46:43Z
dc.date.available2022-01-13T18:46:43Z
dc.date.issued2021-11-23
dc.date.updated2022-01-13T13:16:09Z
dc.description.abstractSpecific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2073-4409
dc.identifier.pmid34943776
dc.identifier.urihttps://hdl.handle.net/2445/182319
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/cells10123268
dc.relation.ispartofCells, 2021, vol. 10, num. 12
dc.relation.urihttps://doi.org/10.3390/cells10123268
dc.rightscc by (c) Iborra Egea, Oriol et al, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationInfart de miocardi
dc.subject.classificationAprenentatge automàtic
dc.subject.otherMyocardial infarction
dc.subject.otherMachine learning
dc.titleDeep Learning Analyses to Delineate the Molecular Remodeling Process after Myocardial Infarction
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
cells-10-03268-v4.pdf
Mida:
5.79 MB
Format:
Adobe Portable Document Format