Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity

dc.contributor.authorZanou, Nadège
dc.contributor.authorDridi, Haikel
dc.contributor.authorReiken, Steven
dc.contributor.authorImamura de Lima, Tanes
dc.contributor.authorDonnelly, Chris
dc.contributor.authorDe Marchi, Umberto
dc.contributor.authorFerrini, Manuele
dc.contributor.authorVidal, Jeremy
dc.contributor.authorSittenfeld, Leah
dc.contributor.authorFeige, Jerome N.
dc.contributor.authorGarcía-Roves, Pablo M. (Pablo Miguel)
dc.contributor.authorLopez-Mejia, Isabel C.
dc.contributor.authorMarks, Andrew R.
dc.contributor.authorAuwerx, Johan
dc.contributor.authorKayser, Bengt
dc.contributor.authorPlace, Nicolas
dc.date.accessioned2022-01-24T19:14:51Z
dc.date.available2022-01-24T19:14:51Z
dc.date.issued2021-12-10
dc.date.updated2022-01-24T19:14:51Z
dc.description.abstractSustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec717660
dc.identifier.issn2041-1723
dc.identifier.pmid34893614
dc.identifier.urihttps://hdl.handle.net/2445/182623
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-021-27422-1
dc.relation.ispartofNature Communications, 2021, vol. 12, num. 1, p. 7219
dc.relation.urihttps://doi.org/10.1038/s41467-021-27422-1
dc.rightscc-by (c) Zanou, Nadège et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)
dc.subject.classificationMetabolisme
dc.subject.classificationADN mitocondrial
dc.subject.classificationExercici
dc.subject.classificationCalci en l'organisme
dc.subject.otherMetabolism
dc.subject.otherMitochondrial DNA
dc.subject.otherExercise
dc.subject.otherCalcium in the body
dc.titleAcute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
717660.pdf
Mida:
3.68 MB
Format:
Adobe Portable Document Format