How abasic sites impact hole transfer dynamics in GC-rich DNA sequences

dc.contributor.authorCorbella Morató, Marina
dc.contributor.authorVoityuk, Alexander A.
dc.contributor.authorCurutchet Barat, Carles E.
dc.date.accessioned2019-02-13T10:12:07Z
dc.date.available2019-09-21T05:10:21Z
dc.date.issued2018-09-21
dc.date.updated2019-02-13T10:12:08Z
dc.description.abstractChanges in DNA charge transfer properties upon the creation of apurinic and apyrimidinic sites have been used to monitor DNA repair processes, given that such lesions generally reduce charge transfer yields. However, because these lesions translate into distinct intra and extrahelical conformations depending on the nature of the unpaired base and its DNA context, it is unclear the actual impact of such diverse conformations on charge transfer. Here we combine classical molecular dynamics, quantum/molecular mechanics (QM/MM) calculations, and kinetic Monte Carlo simulations to investigate the impact of abasic sites on the structure and hole transfer (HT) properties of DNA. We consider both apurinic and apyrimidinic sites in polyG and polyGC sequences and find that most situations lead to intrahelical conformations where HT rates are significantly slowed down due to the energetic disorder induced by the abasic void. In contrast, the presence of an unpaired C flanked by C bases leads to an extrahelical conformation where stacking among G sites is reduced, leading to an attenuation of electronic couplings and a destabilization of hole states. Interestingly, this leads to an asymmetric HT behavior, given that the 5′ to 3′ transfer along the G strand is slowed down by one order of magnitude while the opposite 3′ to 5′ transfer remains similar to that estimated for the reference polyG sequence. Our simulations thus suggest that electrochemical monitoring of the DNA repair process following changes in charge transfer properties can miss repair events linked to abasic sites adopting extrahelical conformations.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec682617
dc.identifier.issn1463-9076
dc.identifier.pmid30168547
dc.identifier.urihttps://hdl.handle.net/2445/128194
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1039/C8CP03572E
dc.relation.ispartofPhysical Chemistry Chemical Physics, 2018, vol. 20, num. 35, p. 23123-23131
dc.relation.urihttps://doi.org/10.1039/C8CP03572E
dc.rights(c) Corbella Morató, Marina et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationTransferència d'energia
dc.subject.classificationTransferència de càrrega
dc.subject.classificationADN
dc.subject.classificationReparació de l'ADN
dc.subject.classificationComplexitat computacional
dc.subject.classificationCàlculs numèrics
dc.subject.otherEnergy transfer
dc.subject.otherCharge transfer
dc.subject.otherDNA
dc.subject.otherDNA repair
dc.subject.otherComputational complexity
dc.subject.otherNumerical calculations
dc.titleHow abasic sites impact hole transfer dynamics in GC-rich DNA sequences
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
682617.pdf
Mida:
6.37 MB
Format:
Adobe Portable Document Format